DOI: 10.1079/RAF2005122 Renewable Agriculture and Food Systems: 21(1); 15-25 # Cropping system influences on soil physical properties in the Great Plains J.L. Pikul, Jr^{1,*}, R.C. Schwartz², J.G. Benjamin³, R.L. Baumhardt², and S. Merrill⁴ ¹USDA-ARS, 2923 Medary Ave. Brookings, SD 57006, USA. ²USDA-ARS, PO Drawer 10, Bushland, TX 79012, USA. ³USDA-ARS, 40335 County Road GG, Akron, CO 80720, USA. ⁴USDA-ARS, PO Box 459, Mandan, ND 58554-0459, USA. *Corresponding author: jpikul@ngirl.ars.usda.gov Accepted 5 May 2005 Research Paper #### **Abstract** Agricultural systems produce both detrimental and beneficial effects on soil quality (SQ). We compared soil physical properties of long-term conventional (CON) and alternative (ALT) cropping systems near Akron, Colorado (CO): Brookings, South Dakota (SD); Bushland, Texas (TX); Fargo, North Dakota (ND); Mandan (ND); Mead, Nebraska (NE); Sidney, Montana (MT); and Swift Current, Saskatchewan (SK), Canada. Objectives were to quantify the changes in soil physical attributes in cropping systems and assess the potential of individual soil attributes as sensitive indicators of change in SO. Soil samples were collected three times per year from each treatment at each site for one rotation cycle (4 years at Brookings and Mead). Water infiltration rates were measured. Soil bulk density (BD) and gravimetric water were measured at 0-7.5, 7.5-15, and 15-30 cm depth increments and water-filled pore space ratio (WFPS) was calculated. At six locations, a rotary sieve was used to separate soil (top 5 cm) into six aggregate size groups and calculate mean weight diameter (MWD) of dry aggregates. Under the CON system at Brookings, dry aggregates (>19 mm) abraded into the smallest size class (< 0.4 mm) on sieving. In contrast, the large aggregates from the ALT system abraded into size classes between 2 and 6 mm. Dry aggregate size distribution (DASD) shows promise as an indicator of SQ related to susceptibility of soil to wind erosion. Aggregates from CON were least stable in water. Soil C was greater under ALT than CON for both Brookings and Mead. At other locations, MWD of aggregates under continuous crop or no tillage (ALT systems) was greater than MWD under CON. There was no crop system effect on water infiltration rates for locations having the same tillage within cropping system. Tillage resulted in increased, decreased, or unchanged near-surface BD. Because there was significant temporal variation in water infiltration, MWD, and BD, conclusions based on a single point-in-time observation should be avoided. Elevated WFPS at Fargo, Brookings, and Mead may have resulted in anaerobic soil conditions during a portion of the year. Repeated measurements of WFPS or DASD revealed important temporal characteristics of SQ that could be used to judge soil condition as affected by management. Key words: soil bulk density, dry aggregate stability, rotary sieve, aggregate size distribution, water infiltration rate, water filled pore space, soil organic carbon #### Introduction Considerable research has been conducted on relationships among cropping sequence, soil organic matter (SOM), and various biological and physical soil properties. It is generally accepted that crop production alone has caused a decline in SOM throughout the Great Plains^{1,2}. Wheat-fallow crop sequence, being a common agricultural practice, has been implicated as the cause of serious declines in SOM²⁻⁴. SOM is linked to fertility and desirable soil tilth. Boyle et al.⁵, in a review of the influence of SOM on soil aggregation and water infiltration, concluded SOM had a disproportionate effect on soil physical behavior. Hudson⁶ reported that soils high in SOM have greater available water-holding capacity than soils of similar texture with less SOM. Bauer and Black⁷ found that available water Mention of commercial products and organizations in this paper is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned. The US Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Table 1. Contrasting management treatments within eight long-term cropping systems. Treatments selected at each site differed in management intensity as characterized by either type or frequency of tillage, cropping intensity, and/or crop rotation diversity and are termed conventional (CON) or alternative (ALT). | Location/Soil series | Treatment | Crop sequence | Tillage | N rate ¹ | | |----------------------------|-----------|-------------------|------------------------|------------------------|--| | Akron, CO | CON | WW-F ² | Sweep (fallow) | Varied | | | Weld silt loam | ALT | WW-C-M | No tillage | Varied | | | Brookings, SD | CON | CC | Chisel plow and disk | High | | | Barnes sandy clay loam | ALT | C-SB-SW-A | Chisel plow and disk | 0 | | | Bushland, TX | CON | WW-SO-F | No tillage | Varied | | | Pullman silty clay loam | ALT | ww-ww | No tillage | 0 | | | Fargo, ND | CON | DW-P | Fall plow | 0 | | | Fargo silty clay | ALT | DW-P | No tillage | 0 | | | Mandan, ND | CON | SW_F | Chisel plow and disk | Medium | | | Wilton silt loam | ALT | SW-WW-SU | No tillage | Medium | | | Mead, NE | CON | C-C | Tandem disk, 2 × | High | | | Sharpsburg silty clay loam | ALT | C-SB-SO-OCL | Tandem disk, 2 × | High | | | Sidney, MT | CON | SW-F | Tandem disk | 45 kg ha ⁻¹ | | | Vida loam | ALT | SW-SW | No tillage | 45 kg ha ⁻¹ | | | Swift Current, SK | CON | SW-F | Chisel plow and harrow | Varied | | | Swinton silt loam | ALT | SW-L | Chisel plow and harrow | Varied | | Varied = N fertilizer application rate based on soil test results. About 7kg of surface soil (0-5 cm) was randomly (approximately six locations per plot) collected on each plot with a shovel in order to measure dry aggregate size distribution (DASD). Measurements were taken at Brookings and Mead for 3 years, at Bushland, Fargo, and Mandan for 2 years, at Swift Current for only 1 year, and none were taken at Akron and Sidney. After air drying, aggregate size distribution was determined by using a rotary sieve³³. Mean weight diameters (MWDs)34 were calculated based on the mass fraction of dry aggregates in six size groups. Group 1 was soil < 0.4 mm, group 2 was 0.4-0.8 mm, group 3 was 0.8-2 mm, group 4 was 2-6 mm, group 5 was 6-19 mm, and group 6 was >19 mm. Representative particle diameter for groups 2-5 was the arithmetic mean of upper and lower sieve diameters, 0.4 mm diameter for group 1, and 19 mm for group 6. Soil aggregates obtained using the rotary sieve from the Brookings and Mead sites were further processed to measure dry aggregate stability, water stability, and SOC. The rotary sieve tends to abrade aggregates and a measure of this abrasion was determined by running individual aggregate groups through the sieve a second time. The second run provides an estimate of dry aggregate stability and is closely related to susceptibility of the soil to wind erosion³⁵. Water stability was measured using a wet sieving device³⁶. We measured water stability of dry aggregates to evaluate treatment effect on soil slaking. Soil organic C was determined by combustion using a LECO CN 2000 analyzer (LECO Corp., St Joseph, MI, USA). Infiltration was measured at six locations on each plot using a single ring infiltrometer³⁶. An aluminum infiltration ring, 15 cm diameter by 13 cm long, was inserted into the soil to a depth of 7.5 cm. A piece of plastic wrap was inserted into the ring with the edges of the plastic draping over the edges of the infiltration ring. Distilled water was added to the ring to correspond to a 25 mm depth in the ring. The plastic wrap was removed from the ring and the time required for the water to infiltrate into the soil was measured. After infiltration of the first 25 mm of water, a second volume of water (wet run) was added to the ring to correspond to a 25 mm depth in the ring. The purpose of the first volume of water was to remove the confounding effects of having different antecedent soil water contents at the time of each infiltration test. The time required for the second volume of water to infiltrate was measured and those measurements are reported here. Duplicate infiltration measurements were made within the row (for row crop systems), on trafficked interrow, and non-trafficked interrow. Analysis of variance was applied to each soil property measured, to determine differences between treatments and sampling times within each location. Analysis of variance and statistical comparisons were completed using the PROC MIXED procedure of SAS³⁷ assuming a completely randomized block design at each location. Cropping system (treatment) and sampling time were designated as fixed effects and plot replicates nested within treatment was designated as a random effect. Probabilities of WFPS exceeding a critical soil-aeration-threshold (SAT) value were determined using parametric distribution analysis (MINITAB Statistical Software, State College, PA, USA). ² Abbreviations: A = alfalfa, C = corn, DW = durum spring wheat, F = summer fallow, L = lentil, M = proso millet, OCL = oat + clover, P = field pea, SB = soybean, SO = sorghum, SU = sunflower, SW = spring wheat, WW = winter wheat. native grassland to $1.6\,\mathrm{g\,cm^{-3}}$ for the lower depth increment (loam to sandy clay loam textures) at two locations. Typically, BD was greatest for cropped land as compared with native grassland (Table 4, grassland not shown). The greatest source of variation in BD was attributable to the time (T) of sampling (Table 5). In tilled plots, there was a tendency for BD in the surface depth increment (0-7.5 cm) to increase during the growing season, probably as a result of soil reconsolidation after spring tillage operations. The tendency for soil reconsolidation is illustrated in Figure 1 for the Brookings site, where surface BD increased during the growing season and subsequently decreased at the beginning of the season except for the end of 2001 and in 2002 when tillage was suspended to permit the growth of alfalfa. Most changes in BD with time probably represent seasonal and annual variations generated by phases in the rotation, tillage and subsequent reconsolidation, and wetting-drying histories. For all locations, measured BD did not exhibit any obvious trend with GW (typical of soils having a low coefficient of linear extensibility). Moreover, there was no observable pattern in the error with which BD was estimated at each sampling time. Hence, we cannot recommend a single crop phase or time of the year at which BD should be measured to obtain the most reliable data for SQ assessments. Differences in BD between cropping systems were most frequently observed at the soil surface depth increment (Table 5, five locations). For locations in which no-tillage was compared with CON tillage, tillage resulted in increased (Mandan), decreased (Fargo), or unchanged (Akron) BD near the surface. Soil texture and the time of tillage relative to sampling probably influenced how and the degree to which tillage influenced BD. Some BD in the lower depth increment of 15–30 cm approached threshold Table 4. Dry aggregate size distribution (means of all dates) expressed as mean weight diameter (MWD) of surface soil (top 50 mm) and bulk density (BD) (0-75 mm and 75-150 mm) for conventional (CON) and alternative (ALT) cropping systems. Locations identified in bold type used the same tillage in the cropping system (other than no till). | | MWD Surface soil | | BD | | | | | |---------------|-----------------------------------------|-------|--------------------|------|--------------------|------|--| | | | | 0-75 mm | | 75–15 0 m m | | | | | CON | ALT | CON | ALT | CON | ALT | | | | Tr. | m | mg m ⁻³ | | | | | | Akron | *************************************** | | 1.27 | 1.30 | 1.36 | 1.38 | | | Brookings | 8.32 | 8.41 | 1.36 | 1.35 | 1.54 | 1.54 | | | Bushland | 8.95 | 10.85 | 1.31 | 1.22 | 1.43 | 1.48 | | | Fargo | 8.04 | 10.63 | 1.00 | 1.17 | 1.12 | 1.22 | | | Mandan | 3.99 | 4.75 | 1.33 | 1.14 | 1.37 | 1.29 | | | Mead | 4.98 | 5.03 | 1.17 | 1.15 | 1.42 | 1.39 | | | Sidney | NM | NM | 1.44 | 1.51 | 1.54 | 1.52 | | | Swift Current | 21.86 | 22.69 | 1.23 | 1.23 | 1.38 | 1.42 | | NM, not measured. Table 5. Analysis of variance dry aggregate size distribution expressed as mean weight diameter of surface soil (top 50 mm) and bulk density at 0-75 mm and 75-150 mm depths. Locations identified in bold-italic type used the same tillage in the cropping system (other than no till). | Effect | Akron | Brookings | Bushland | Fargo | Mandan | Mead | Sidney | Swift Current | |--------------------------|---------|-----------|----------|-------------|-----------------|---------|---------|---------------| | | | | | P-value, MW | D of surface so | íl | | | | CS | NM | NS | 0.051 | 0.016 | NS | NS | NM | NS | | T | NM | < 0.001 | < 0.001 | < 0.001 | 0.004 | < 0.001 | NM | 0.001 | | $\overline{CS} \times T$ | NM | 0.056 | 0.083 | NS | NS | < 0.001 | NM | NS | | | | | | P-value, B | D (0-75 mm) | | | | | CS | NS | NS | 0.014 | 0.005 | 0.004 | 0.018 | 0.012 | NS | | T | NS | < 0.001 | < 0.001 | NS | NS | < 0.001 | 0.013 | NS | | $\overline{CS} \times T$ | NS | NS | 0.039 | NS | NS | NS | NS | NS | | | | | | P-value, BD | (75–150 mm). | | | | | CS | NS | NS | NS | NS | 0.011 | 0.004 | NS | NS | | T | < 0.001 | < 0.001 | < 0.001 | 0.033 | 0.008 | < 0.001 | < 0.001 | NS | | CS × T | NS NM = not measured, T = time, significant treatment effects at P = 0.05, NS = not significant. ### Soil aggregates Cropping system significantly affected MWD at Fargo and Bushland (Tables 4 and 5). Cropping systems at Fargo have a tillage variable where no tillage in the ALT treatment was compared with fall plow tillage in the CON treatment. Both systems at Bushland are under no tillage. MWD was greater under the ALT system at both Bushland and Fargo. Average (all dates) MWD at Bushland was 10.85 mm under ALT and 8.95 mm under CON (Table 4). Soil Microbial biomass C and N at Bushland was greatest under continuous wheat (ALT plots, 331 kg ha⁻¹) compared with a wheat-sorghum-fallow (CON plots, 209 kg ha⁻¹) rotation. This agrees with Liebig et al. 41 who found greater levels of glomalin, and wet aggregate stability under ALT management at Bushland. Mycorrhizal fungi are the source of glomalin and can improve soil structure (as suggested by greater wet aggregate stability and MWD under ALT management compared with CON) by forming waterstable soil aggregates⁴². A large MWD represents a DASD having a large portion of large aggregates. Data suggest that soil aggregates formed under no tillage (a system having elevated organic C) resist disintegration compared with aggregates under tillage. Studies at Brookings of a no tillage and CON tillage corn—soybean rotation (J.L. Pikul, unpublished data 2003) support the observation that dry aggregate stability is greater under no tillage compared with CON tillage. Bisal and Ferguson⁴³ showed that finer textured soils undergo tremendous changes with time over a multi-year weather cycle. Merrill et al. 44 found that the geometric mean diameter of aggregates on a silt loam soil increased from about 1–2 mm to about 20–30 mm with time. Average MWD for the Swift Current site (Table 4) was similar to that reported by Merrill et al. 44 Figure 4. The time course of dry aggregate stability expressed as mean weight diameter (MWD) throughout three seasons for the conventional (CON) and alternative (ALT) rotations at Brookings, SD. In each year, soils were sampled prior to planting, at peak crop biomass, and after harvest. MWD based on aggregate fractions following second sieving. There was a significant effect of time on MWD at all locations (Table 5). At Brookings, MWD under ALT (4-year rotation) was significantly greater than CON (continuous corn) in the 4th year of the rotation (alfalfa phase). A similar comparison at Mead showed a smaller MWD under ALT compared with CON. MWD throughout three seasons are shown in Figure 4 for Brookings, SD and Figure 5 for Mead, NE. With the exception of the final measurements in 2002, there was not a statistically significant difference between treatments in MWD for either Brookings or Mead. The crop ending the 4-year rotation at Brookings is alfalfa and the improvement in aggregate stability (represented by a larger MWD value for ALT) may be a consequence of having a perennial like alfalfa in rotation. MWD is a convenient way to generalize DASD, but expressing a distribution as a single number (e.g., MWD) fails to show differences in properties that influence aggregate stability. Chepil³³ proposed that dry aggregate stability could be measured by multiple passes through a rotary sieve, and we followed those ideas proposed by Chepil. We found differences in the distribution and stability of dry aggregates between treatments at Brookings and, to a lesser extent, treatments at Mead (Table 6). Erodible fraction is defined as the percentage of soil mass < 0.84 mm diameter, and this parameter has been related to soil wind erodibility. Merrill et al. 44 have shown that the erodible fraction was more sensitive to soil management effects than indices describing aggregate size distribution (e.g., MWD). The ALT treatment at Brookings had significantly greater fraction of large aggregates in groups 5 and 6 (Table 6) following the first sieving than did the CON treatment. As shown by the change in mass on second sieving, aggregates under ALT also had less tendency to abrade into small aggregates (groups 1 and 2) when Figure 5. The time course of dry aggregate stability expressed as mean weight diameter (MWD) throughout three seasons for the conventional (CON) and alternative (ALT) rotations at Mead, NE. In each year, soils were sampled prior to planting, at peak crop biomass, and after harvest. MWD based on aggregate fractions following second sieving. same soil type, we think that aggregate stability is directly related to SOM status (J.L. Pikul, unpublished data 2005); however, we do not understand the temporal variation of this property within a system. Values of MWD (calculated from aggregate distribution) provide a convenient way to show the dynamics of surface conditions with time as shown for Brookings (Fig. 4) and Mead (Fig. 5). Detailed analysis of aggregate properties, as conducted for the final soil samples (harvest 2002), at Brookings and Mead were laborious. Inspection of MWD values (Figs. 4 and 5) show that we conducted our detailed analysis of aggregates at a time when the MWD was close to an average value for the rotation cycle. For the Brookings site, MWD averaged across all dates was 8.3 mm for CON and 8.4 mm for ALT. Average MWD for the final sample was 7.0 mm for CON and 10.1 mm for ALT (Fig. 4). For the Mead site, MWD averaged across all dates was 5.0 mm for CON and 5.0 mm for ALT. Average MWD for the final sample was 6.2 mm for CON and 4.9 mm for ALT (Fig. 5). DASD was expressed as MWD changes within a season and between seasons. Recognizing the temporal change in this surface soil property is important for understanding the dynamics of other soil properties linked to soil surface conditions such as water infiltration. Thus, MWD appears to be a useful trait for quantifying differences (at time of measurement) between management systems and as a measure to quantify temporal dynamics within a system. #### Conclusions #### Infiltration Efficient water management requires attention to: (i) soil water use by crops (ii) reduction of water runoff, and (iii) opportunities to improve water recharge. Water intake rates are governed by surface and internal soil conditions and these conditions are ever-changing. Further, the inherently high spatial variability in water infiltration rates makes the interpretation of treatment effects difficult, especially in situations where tillage is used. We found no significant cropping system effects on infiltration for locations that had the same tillage system but differing cropping intensity or crop species in the cropping system. However, in the cases where no tillage was compared with tillage, infiltration was greater following tillage and declined over time in tilled systems. A cyclical pattern of infiltration rate was present for most cropping systems and locations, showing that a snap-shot of water infiltration (one-time measurement) would not be an appropriate SQ indicator because of significant temporal variation in infiltration rate. Measuring infiltration in wheel track and untracked parts of the field provides farmers with an understanding of how field operations affect this parameter and, in soils susceptible to reduced infiltration in traffic areas, will demonstrate the importance of controlling traffic patterns. # Bulk density and water-filled pore space Long-term changes in BD indicative for use in SQ assessments would be difficult to establish and may be misleading if using a single sampling date, because BD changed significantly within each season and rotation. Multiple sampling dates throughout one or more rotational sequences are needed to ascertain long-term changes in BD. Because most tillage operations on cropland are restricted to the upper 150 mm, and because soil root proliferation is typically greatest at shallow soil depths, BD measured near the surface was most sensitive to the effects of cropping systems. High BD (e.g., $>1.4\,\mathrm{g\,cm^{-3}}$) near the surface, such as those observed at the Sidney location, are clearly undesirable. However, it may be difficult to ascertain if minor but significantly different BD observed at the surface for some of these treatment comparisons in fact lead to improved SQ. At lower soil depths, where BD more strongly influences root proliferation, a critical threshold criterion proposed by Arshad et al. 45 may be useful in evaluating these effects within an assessment framework for SQ. Tillage pans with narrow zones of high soil strength will also impede root proliferation. However, these features may sometimes be difficult to detect when the sampling depth increment is large. WFPS, a function of BD and GW, fluctuated during the season and different rotational phases. We used a WFPS ratio of 0.6 as SAT value to delineate between water-limiting and aeration-limiting soil microbial processes. This approach provided a practical criterion for a systematic evaluation of distribution functions for the probability of exceeding a critical WFPS (with time, treatment, or depth). Systems having a high probability of exceeding SAT might then be viewed as having a detrimental effect on SQ. This criterion should be especially appropriate for locations having a combination of climate (cool and wet) and soil conditions (poorly drained) that pose a risk. For example, management at the Fargo location had a significant effect on WFPS and there was a high probability of exceeding SAT under no tillage when compared with tillage. Identification of areas of a field having BDs exceeding threshold values for root elongation will be of interest to farmers. Management practices can be modified to address areas having high BDs due to activities such as wheel traffic or tillage. WFPS is an attribute that is more difficult to measure, but if areas of a field that exceed 0.6 WFPS for extensive periods of time can be identified, management practices such as improved drainage or reduced application of N fertilizer can be undertaken to lower the water content or decrease the potential for emission of greenhouse nitrogenous gases. ## Soil aggregates Greater MWD values were found under systems with greater cropping intensity and less tillage at Bushland and Fargo, respectively. A large MWD value represents an - Cropping system influences on soil physical properties - dryland. Transactions of the American Society of Agricultural Engineers 37:473-479. - 17 Pikul, J.L. Jr and Aase J.K. 2003. Water infiltration and storage affected by subsoiling and subsequent tillage. Soil Science Society of America Journal 67:859–866. - 18 Seta, A.K., Blevins, R.L., Frye, W.W., and Barfield, B.J. 1993. Reducing soil erosion and agricultural chemical losses with conservation tillage. Journal of Environmental Quality 22:661-665. - 19 Edwards, W.M., Triplett, G.B., Van Doren, D.M., Owens, L.B., Redmond, C.E., and Dick, W.A. 1993. Tillage studies with a corn-soybean rotation: Hydrology and sediment loss. Soil Science Society of America Journal 57:1051-1055. - 20 Ehlers, W. 1975. Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science 119:242–249. - 21 Rhoton, F.E., Bruce, R.R., Buehring, N.W., Elkins, G.B., Langdale, C.W., and Tyler, D.D. 1993. Chemical and physical characteristics of four soil types under conventional and notillage systems. Soil and Tillage Research 28:51-61. - 22 Vyn, T.J. and Raimbault, B.A. 1993. Long-term effect of five tillage systems on corn response and soil structure. Agronomy Journal 85:1074-1079. - 23 Bruce, R.R., Langdale, G.W., and Dillard, A.L. 1990. Tillage and crop rotation effect on characteristics of a sandy surface soil. Soil Science Society of America Journal 54:1744-1747. - 24 Blevins, R.L., Smith, M.S., Thomas, G.W., and Frye, W.W. 1983. Influence of conservation tillage on soil properties. Journal of Soil and Water Conservation 38:301-305. - 25 Chang, C. and Lindwall, C.W. 1990. Comparison of the effect of long-term tillage and crop rotation on physical properties of a soil. Canadian Agricultural Engineering 32:53-55. - 26 Mielke, L.N., Wilhelm, W.W., Richards, K.A., and Fenster, C.R. 1984. Soil physical characteristics of reduced tillage in a wheat-fallow system. Transaction of the American Society of Agricultural Engineers 27:1724-1728. - 27 Allmaras, R.R., Pikul, J.L. Jr, Kraft, J.M., and Wilkins, D.E. 1988. A method for measuring incorporated crop residue and associated soil properties. Soil Science Society of America Journal 52:1128-1133. - 28 Pikul, J.L. Jr and Allmaras, R.R. 1986. Physical and chemical properties of a Haploxeroll after fifty years of residue management. Soil Science Society of America Journal 50:214-219. - 29 Varvel, G., Reidell, W., Deibert, E., McConkey, B., Tanaka, D., Vigil, M., and Schwartz, R. 2006. Great Plains cropping system studies for soil quality assessment. Renewable Agriculture and Food Systems 21:3-14. - 30 Gardner, W.H. 1986. Water content. In A. Klute (ed.). Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI. p. 493-544. - 31 Blake, G.R. and Hartge, K.H. 1986. Bulk density. In A. Klute (ed.). Methods of Soil Analysis Part 1: Physical and - Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI. p. 363-375. - 32 Hillel, D. 1971. Soil and Water Physical Principles and Processes. Academic Press, New York, NY. - 33 Chepil, W.S. 1962. A compact rotary sieve and the importance of dry sieving in physical soil analysis. Soil Science Society of American Proceedings 26:4-6. - 34 Kemper, W.D. and Rosenau, R.C. 1986. Aggregate stability and size distribution. In A. Klute (ed.). Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. Agronomy Monograph No. 9, 2nd ed. American Society of America, Madison, WI. p. 425-444. - 35 Chepil, W.S. 1951. Properties of soil which influence wind erosion: IV. State of dry aggregate structure. Soil Science 72:387-401. - 36 Lowery, B., Hickey, W.J., Arshad, M.A., and Lal, R. 1996. Soil water parameters and soil quality. In J.W. Doran and A.J. Jones (eds). Methods for Assessing Soil Quality. Soil Science Society of America Special Publication no. 49. Soil Science Society of America, Madison, WI. p. 143-155. - 37 Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. 1996. SAS System for Mixed Models. SAS Institute Inc., Cary, NC, USA. - 38 Jones, C.A. 1983. Effect of soil texture on critical bulk densities for root growth. Soil Science Society of America Journal 47:1208-1211. - 39 Parkin, T.B., Doran, J.W., and Franco-Vizcaino, E. 1996. Field and laboratory tests of soil respiration. In J.W. Doran and A.J. Jones (eds). Methods for Assessing Soil Quality. Soil Science Society of America Special Publication, no. 49. Soil Science Society of America, Madison, WI. p. 231-245. - 40 Doran, J.W., Mielke, L.N., and Power, J.F. 1990. Microbial activity as regulated by soil water-filled pore space. In Transactions of the 14th International Congress of Soil Science, Kyoto, Japan, 12–18 August. International Society of Soil Science, Wageningen, The Netherlands. p. 94–100. - 41 Liebig, M., Carpenter-Boggs, L., Johnson, J.M.F., Wright, S., and Barbour, N. 2006. Cropping system effects on soil biological characteristics in the Great Plains. Renewable Agriculture and Food Systems 21:36-48. - 42 Wright, S.F. and Upadhyaya, A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97-107. - 43 Bisal, F. and Ferguson, W.S. 1968. Monthly and yearly changes in aggregate size of surface soils. Canadian Journal of Soil Science 48:159–164. - 44 Merrill, S.D., Black, A.L., Fryrear, D.W., Saleh, A., Zobeck, T.M., Halvorson, A.D., and Tanaka, D.L. 1999. Soil wind erosion hazard of spring wheat-fallow as affected by long-term climate and tillage. Soil Science Society of America Journal 63:1768-1777. - 45 Arshad, M.A., Lowery, B., and Grossman, B. 1996. Physical tests for monitoring soil quality. In J.W. Doran and A.J. Jones (eds). Soil Science Society of America Special Publication, no. 49. Soil Science Society of America, Madison, WI. p. 123-142.